Analitik Geometrinin Güzelliğini Kanıtlayan 10 Formül

analitik geometrinin guzelligini kanitlayan 10 formul CYNEG3nO

Teknolojinin yanı sıra geçmişten günümüzde kadar olan süreçte de günlük hayatımıza olan etkisi büyük. Günümüzde tarımsal alanların planlanmasından uzay istasyonlarının yörüngelerine kadar geniş bir kullanım alanına sahip. Biz de sizler için popüler olan 10 analitik geometri formülünü listeledik.

Analitik Geometri Formülleri:

  • Doğrunun eğimi
  • Doğru ile nokta arasındaki dik uzaklık
  • Eksenleri kestiği noktaları belli olan doğrunun denklemi
  • Doğru demeti
  • Kesişen iki doğru arasındaki açı
  • Analitik bir yapıyı döndürme ve öteleme
  • Dörtgenin alanı
  • Üçgenin alanı
  • Homojen düzlemsel bir cismin ağırlık merkezi
  • Genel konik denklemi

Doğrunun eğimi

18b2210776308b5b6be349d0aeb5a677a349631a

Bir doğrunun eğimi, doğrunun yataylığını ve aynı zamanda değer değişimini ifade eder.

Doğru ile nokta arasındaki dik uzaklık

c4a7f270803890d1c3bf4d02b427bbbd00d1b7ca

Matematikte, uzaklık birden fazla şekilde tanımlanabilir. Bu karmaşayı engellemek için dik uzaklık kullanılır. İki nokta arasındaki uzaklıktan türetilebilen bu formül yukarıdaki gibi ifade edilir.

Eksenleri kestiği noktaları belli olan doğrunun denklemi

2006c49e913f0adea5df253be852093bf8d145a6

Bir doğruyu analitik düzlemde ifade etmek için bazı verilere ihtiyacımız var. Eğer eksenlerin kestiği noktaları bilirsek doğruyu yukarıdaki gibi ifade edebiliriz.

Doğru Demeti

e7a91b66cea5d1229962d4209ed8f724f0b38495

Bir noktada kesişen n tane doğrunun formülünü bilirsek, o noktadan geçen sonsuz tane doğru bulmamız mümkün olur.

Kesişen iki doğru arasındaki açı

069ad1d316f3c04b1fae02ccb354db99a488f592

Birçok geometrik şekli yorumlamamız sağlayan şeylerden biri de açılardır. Burada da pek çok geometrik şeklin temelini görüyoruz.

Analitik bir yapıyı döndürme ve öteleme

da54e10930a7cc7e520f6c30812a55e1b0617d45

Analitik bir düzlemde ifade edebildiğimiz herhangi bir şeyi istediğimiz yere öteleyebilir ve istediğimiz dereceyle döndürebiliriz.

Dörtgenin alanı

ae47e8a53656e910f9ccfb029c6f9e0df0044962

Özellikle, arazi ölçümleri ve tarımsal alanların tasarlanmasında sık sık alan hesaplarından faydalanılır. Geçmiş uygarlıklarda verimli ekin yapmak için kullanıldığı da görülmüştür.

Üçgenin alanı

956b2036cdfdecb04f5a142add2d477234a5e33d

Matematikte bazı operatörleri farklı amaçlarla da kullanabiliriz, üç köşesi verilen bir üçgenin alanını da multi-lineer bir fonksiyon olan determinant ile yukarıdaki gibi hesaplayabiliriz.

Homojen düzlemsel bir cismin ağırlık merkezi

5e17cc4dfb99a7c0da45d9dac517ce48b378e958

Herhangi n sayıda parçadan oluşan homojen düzlemsel bir cismin, seçilen bir eksen takımına göre ağırlık merkezi yeri olan (X, Y) noktası yukarıdaki bağıntılar ile hesaplanabilir.

Genel konik denklemi

52eefb54d72d876b1aab6ddd86ee14ca58d60a47

Parabol, çember, elips ve hiperbol gibi konik yapılar aslında bir koninin kesitleridir. Yukarıdaki formül ile bütün bu konik yapıları ifade edebiliriz.